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Exercise 1. (1st order ODE marathon)
For each of the following IVP, give an implicit equation for the solution. If possible,
give a closed-form formula for the solution.

1. 2yy ′ + 1 = y2 + x, with y(0) = 1.

2. y ′ + xy = y4, with y(0) = 1.

3. y ′ = x2−y2

xy , with y(1) = 2.

4. y ′ = xy−1
x2 , with y(1) = 3.

Exercise 2. (autonomous equation)
Find all the equilibrium solutions of the equation

y ′ = sin(πy),

and classify each one in terms of stability. Sketch solution curves in the extended
phase space, and describe the behaviour of solutions as t → ±∞.

Exercise 3. Consider the differential equation:

y ′ = (x+ y+ 1)2 + 3.

1. Discuss the uniqueness and existence of solutions given an initial value (x0,y0).

2. Solve the equation with the change of variable z = x+ y+ 1.
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Solution 1

1. Since 2yy ′ = d
dx(y

2), we make the substitution z = y2 so the equation becomes
z ′− z = x− 1. The homogeneous solution of the 1st order linear ODE is x 7→ Aex,
for a constant A ∈ R. Using the method of undetermined coefficients, we find
the special solution x 7→ −x. Thus the general solution is z : x 7→ Aex − x. The
initial value z(0) = 1 gives A = 1. So z(x) = ex − x.

Thus y(x) = ±
√
ex − x, and to determine the sign we use the initial condition

y(0) = 1. The unique solution of the IVP is y : x 7→
√
ex − x.

2. This is a Bernoulli equation, i.e. it is of the form y ′ + p(x)y = q(x)yn. As seen in
Recitation 4, the substitution z = y1−n turns this into a linear ODE. Here n = 4,
so we set z = y−3, and z ′ = −3y ′y−4. The IVP becomes

z ′ − 3xz = 1, z(0) = 1.

The homogeneous solution of this equation is x 7→ Ae
3
2x

2
, for A ∈ R. We find the

special solution z : x 7→ −3e
3
2x

2 ∫x
0 e−

3
2t

2
dt. The initial condition z(0) = 1 gives

A = 1.

Going back to y = z−
1
3 , we obtain that the solution to the IVP is

y : x 7→ 1

3

√
e

3
2x

2
(
−3

∫x
0 e−

3
2t

2
dt+ 1

) .

3. We simplify the RHS and rewrite the equation as y ′ = x
y − y

x . Then the equation
is seen to be homogeneous, so we set z = y

x . Then y = xz, so y ′ = z + xz ′.
Plugging this back into the equation, we obtain

z+ xz ′ =
1
z
− z ⇔ xz ′ =

1 − 2z2

z

⇔ zdz

1 − 2z2 =
dx

x
.

The equation is separable, and we integrate it (using the change of variable u =
z2) into

−
1
4

ln |1 − 2z2| = ln |x|+ c

We have z(1) = y(1) = 2, which gives c = −1
4 ln 7. Since 1 − 2z2 < 0 for z close to

2, and x > 0 for x close to 1, the solution of the IVP in terms of z is defined by

ln(2z2 − 1) = ln(7) − 4 ln x = ln
(

7
x4

)
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Finally, we express in terms of z by taking the exponential

z2 =
1
2
+

7
2x4 ,

and since z(1) = 2 > 0 we deduce that the solution is z : x 7→
√

1
2 +

7
2x4 . Going

back to y = xz, we obtain the solution

y : x 7→ x

√
1
2
+

7
2x4 .

4. Method1: the equation is

(1 − xy)dx+ x2dy = 0

make it exact.

Method 2: Here, there is no obvious change of variable. We look for a substitu-
tion z = yn, as these are the simplest kind of substitution. Then z ′ = ny ′yn−1,
and the equation can be rewritten as

z ′ = n
zx− z

n−1
n

x2 = n
z

x
−n

z1− 1
n

x2 .

Now, we note that for n = −1, we obtain a homogeneous equation! So we
specialize to n = −1, so z = 1

y , and the equation is

z ′ =
z2

x2 −
z

x
.

We solve the equation by making the substitution v = z
x . Then the equation

becomes

xv ′ + v = v2 − v ⇔ xv ′ = v2 − 2v

⇔ dv

v2 − 2v
=

dx

x

We integrate this (e.g. using the polar decomposition 1
v2−2v = 1

2

( 1
v−2 −

1
v

)
) as

ln
∣∣∣∣v− 2

v

∣∣∣∣ = 2 ln |x|+ c

Overall, we have v(x) = 1
xy(x) , so the initial condition translates as v(1) = 1

y(1) =
1
3 . We deduce c = ln 5, and inspecting the sign of v around the initial value x = 1
allows to lift the absolute values and obtain the equation

ln
(

2
v
− 1

)
= ln 5x2.
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Solving for v we get

v(x) =
2

1 + 5x2 .

Thus

y(x) =
1

xv(x)
=

1 + 5x2

2x
.

Solution 2

1. Equilibrium positions.
We solve y ′ = 0 and obtain the constant solutions yn = n, for each integer n ∈ Z.

2. Stability.
If n is even, then f is increasing around yn so the equilibirum is unstable. If n is
odd then f is decreasing around yn, so the equilibirum is stable.

3. Concavity/convexity.
We study the sign of y ′′ = y ′f ′(y) = π cos(πy) sin(πy) = π

2 sin(2πy). It is positive
for k < y < k+ 1

2 and negative for k+ 1
2 < y < k+ 1, where k ∈ Z.

4. Behaviour of solutions as t → +∞.
Let y be a non constant solution to the equation. By the uniqueness theorem, the
graph of y cannot intersect the equilibrium positions yn. So, for each non con-
stant solution there exists an integer n ∈ Z such that yn = n < y < n+1 = yn+1.
To simplify the discussion, we assume that n is even. Then y is bounded below
by an unstable equilibrium, and bounded above by a stable equilibrium. A nat-
ural guess is that the solution y converges to the stable equilibirum as t → +∞.
We prove it is indeed the case using the equation and results from analysis.

Since f is positive on (n,n+ 1), we have y ′ > 0 so y is strictly increasing. Because
y is a continuous function bounded above and strictly increasing, we deduce that
it admits a finite limit as t → +∞, equal to a = supt∈R y(t), and furthermore
n < a ⩽ n+ 1. As a consequence, y ′ admits the limit f(a) = sin(πa) as t → +∞.
We will prove that f(a) = 0, which will imply a = n+ 1.

If n < a ⩽ n+ 1
2 , then y ′ is strictly increasing. In particular, fix a large T ∈ R

and let m = y ′(T). Let t > T , we have y ′(t) > m so

y(t) = y(T) +

∫t
T

y ′ > y(T) + (t− T)m,

and in particular y is not bounded: this is absurd. Thus we have n+ 1
2 < a ⩽

n+ 1.
If n+ 1

2 < a < n, then y ′ is strictly decreasing for t > T , with T large enough.
Thus for t > T , we have y ′(t) > m = inft>T y ′(t), and furthermore m =
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limt→+∞ y ′(t) = f(a) > 0 since y ′ is strictly decreasing. By the same reason-
ing as above, we conclude that in this case the function y is not bounded: this is
absurd.

Thus a = n+ 1, and limt→+∞ y(t) = n+ 1. The discussion is similar for n odd,
and the solutions converge to the stable equilibirum bounding them below.

5. Behaviour of solutions as t → −∞.
There are two ways to do this:

• Method 1: direct reasoning based on the monotony of y, similar to the discus-
sion for t → +∞.

• Method 2: change of variable s = −t. Let u(t) = y(−t), then we have u ′ = −y ′

so u ′ = − sin(πu). The interesting thing is that under this substitution,
unstable equilibirum and stable equilibirum are exchanged. Then as t →
+∞, the solutions u(t) of the new system tend towards the closest stable
equilibirum. Translating back in terms of y, this means that as t → −∞, the
non constant solutions tend to the closest unstable equilibrium.
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