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November 1, 2024

Exercise 1. (1st order ODE marathon)
For each of the following IVP, give an implicit equation for the solution. If possible,
give a closed-form formula for the solution.

1. 2yy’ +1 =y +x, with y(0) = 1.
2. y' +xy =y, with y(0) = 1.

3.y’ = Xy with y(l) =2.

xy /

4.y’ =21 withy(1) =3.

Exercise 2. (autonomous equation)
Find all the equilibrium solutions of the equation

y’ = sin(my),

and classify each one in terms of stability. Sketch solution curves in the extended
phase space, and describe the behaviour of solutions as t — F-oc0.

Exercise 3. Consider the differential equation:
y' = (x+y+1)2+3.
1. Discuss the uniqueness and existence of solutions given an initial value (xo, yo).

2. Solve the equation with the change of variable z = x +y + 1.



Solution 1

1. Since 2yy’ = d%((yz), we make the substitution z = y? so the equation becomes

2z’ —z = x—1. The homogeneous solution of the 1st order linear ODE is x — Ae*,
for a constant A € R. Using the method of undetermined coefficients, we find
the special solution x — —x. Thus the general solution is z: x — Ae* —x. The
initial value z(0) =1 gives A = 1. So z(x) = e* —x.

Thus y(x) = +£v/e* —x, and to determine the sign we use the initial condition
y(0) = 1. The unique solution of the IVP is y: x — y/eX —x.

2. This is a Bernoulli equation, i.e. it is of the form y’ + p(x)y = q(x)y™. As seen in
Recitation 4, the substitution z = ylfﬂ turns this into a linear ODE. Here n = 4,
sowe set z=1y"3, and z’ = —3y’y~*. The IVP becomes

z/—3xz=1, 2z(0)=1.

The homogeneous solution of this equation is x — Ae%"z, for A € R. We find the
special solution z: x — —3e2*" [ o e 3t

A=1.
Going back toy = Z_%, we obtain that the solution to the IVP is

dt. The initial condition z(0) = 1 gives

1
Yy x— .

i/egxz (—3 o e 2 dt+ 1)

3. We simplify the RHS and rewrite the equation as y’ =

is seen to be homogeneous, so we set z = % Then
Plugging this back into the equation, we obtain

— 2. Then the equation

x
Y /
y =xz, 0y’ = z+xz.
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Z+XZ2 =—-—z2& %2 =
z

The equation is separable, and we integrate it (using the change of variable u =
z?) into
1
~1 Inj1—22% =In|x|+¢

We have z(1) = y(1) = 2, which gives ¢ = —i In7. Since 1 —2z% < 0 for z close to
2, and x > 0 for x close to 1, the solution of the IVP in terms of z is defined by

In(2z> —1) =In(7) —4Inx =In <74>
X



Finally, we express in terms of z by taking the exponential

2 1,7
2 XY
and since z(1) = 2 > 0 we deduce that the solution is z: x % + % Going
back to y = xz, we obtain the solution
1 7

Y X=X §+ﬂ'

. Method1: the equation is
(1—xy)dx +x*>dy =0

make it exact.

Method 2: Here, there is no obvious change of variable. We look for a substitu-

tion z = y™, as these are the simplest kind of substitution. Then z’ = ny'y™!,

and the equation can be rewritten as

n-1 1—1
’ X —Z z Zz

Z=m———=n--—mn
x2 X x2
Now, we note that for n = —1, we obtain a homogeneous equation! So we
specialize ton =—1,s0z = %, and the equation is
, 22z
z = N
X? X

We solve the equation by making the substitution v = Z. Then the equation

becomes

2

v +v=v—vexv =vZ—2v
dv  dx
v2—2v  x
We integrate this (e.g. using the polar decomposition ﬁ =1 (ﬁ —1)as
v—2
In ‘ =2Inx|+c¢c
Overall, we have v(x) = %, so the initial condition translates as v(1) = ﬁ =

1. We deduce ¢ = In5, and inspecting the sign of v around the initial value x = 1

allows to lift the absolute values and obtain the equation

In <2 — 1) = In5%>.
v



Solving for v we get

Thus

Solution 2

1. Equilibrium positions.

We solve y’ = 0 and obtain the constant solutions y,, = n, for each integer n € Z.

2. Stability.
If n is even, then f is increasing around yr, so the equilibirum is unstable. If n is
odd then f is decreasing around yn, so the equilibirum is stable.

3. Concavity/convexity.
We study the sign of y” = y'f'(y) = mcos(my) sin(my) = 7 sin(2my). It is positive
fork<y< k+% and negative for k—l—% <y < k+1, where k € Z.

4. Behaviour of solutions as t — +o0.

Let y be a non constant solution to the equation. By the uniqueness theorem, the
graph of y cannot intersect the equilibrium positions yn. So, for each non con-
stant solution there exists an integer n € Z suchthatyn, =n<y<n+1=yn4.
To simplify the discussion, we assume that n is even. Then y is bounded below
by an unstable equilibrium, and bounded above by a stable equilibrium. A nat-
ural guess is that the solution y converges to the stable equilibirum as t — +o0.
We prove it is indeed the case using the equation and results from analysis.

Since f is positive on (n,n+1), we have y’ > 0 so y is strictly increasing. Because
y is a continuous function bounded above and strictly increasing, we deduce that
it admits a finite limit as t — +o0, equal to a = sup, R y(t), and furthermore
n < a<n+1. Asa consequence, y’ admits the limit f(a) = sin(7ta) as t — +oo.
We will prove that f(a) = 0, which will imply a =n+ 1.

fn<a<n+ %, then y’ is strictly increasing. In particular, fix a large T € R
and let m = y/(T). Let t > T, we have y’(t) > m so

t
y(t) = y(T) +Ly’ > y(T) + (t=T)m,

and in particular y is not bounded: this is absurd. Thus we have n+ 1 < a <
n+1.

Ifn+1 < a<mn,theny’is strictly decreasing for t > T, with T large enough.
Thus for t > T, we have y’(t) > m = infi-ty’(t), and furthermore m =



lim¢ 4o y’(t) = f(a) > 0 since y’ is strictly decreasing. By the same reason-
ing as above, we conclude that in this case the function y is not bounded: this is
absurd.

Thus a =n+1, and lim¢_,; », y(t) = n+ 1. The discussion is similar for n odd,
and the solutions converge to the stable equilibirum bounding them below.

. Behaviour of solutions as t —+ —oo0.
There are two ways to do this:

® Method 1: direct reasoning based on the monotony of y, similar to the discus-
sion for t — +o0.

® Method 2: change of variable s = —t. Let u(t) = y(—t), then we have u’ = —y’
so u’ = —sin(mtu). The interesting thing is that under this substitution,
unstable equilibirum and stable equilibirum are exchanged. Then as t —
+00, the solutions u(t) of the new system tend towards the closest stable
equilibirum. Translating back in terms of y, this means that as t — —oo, the
non constant solutions tend to the closest unstable equilibrium.



